MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in numerous fields. The following is an in depth guide to the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material composed of M, A, X elements around the periodic table, collectively called “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the key group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, three of the components of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is a new type of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, consisting of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers back to the main-group elements, and X means the elements of C and N. The MXene material is actually a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials get them to have a variety of applications in structural materials. For instance, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which may be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also used in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be found in energy materials. For instance, K4(MP4)(P4) is one of the MAX materials rich in ionic conductivity and electrochemical activity, which can be used a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials certainly are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The surface of MXene materials can connect with more functional atoms and molecules, and a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually are the etching therapy for the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials really are a new type of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the ability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are popular in energy storage and conversion. As an example, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials may also be used as catalysts in fuel cells to boost the action and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. As an example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. For instance, MXene materials can be used gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. In addition, MXene materials could also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, using the continuous progress of science and technology and the improving demand for services for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will be further expanded and improved. These aspects could become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques could be further explored to realize a more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, however, there is still room for further optimization. In the future, the composition, structure, surface treatment along with other facets of the material can be studied and improved comprehensive to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been widely used in many fields, but you may still find many potential application areas to become explored. In the future, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection and other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in numerous fields. Using the continuous progress of science and technology as well as the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.